|
27.12.2016 Физики нашли способ дистанционно измерять температуру воды в АрктикеРоссийские ученые из НИТУ «МИСиС», МФТИ и Института общей физики РАН исследовали эффективность различных бесконтактных методов измерения температуры воды и ее вариации (профиля) по глубине по спектральному отклику. Соответствующая статья была опубликована в журнале Optics Letters, краткие итоги изложены в пресс-релизе МФТИ. Был проведен анализ четырех способов обработки данных, часть из которых была опубликована ранее. Наиболее оптимальный из них, который был предложен, разработан и защищен патентом России самими авторами, показал точность в 0,15 градуса Цельсия. Исследование поможет развитию технологий дистанционного измерения температуры в поверхностном слое океана и, следовательно, миграции теплоты-энергии в труднодоступных районах, таких как Арктика, где средняя температура растет примерно вдвое быстрее, чем в целом на планете. Основой метода стало комбинационное рассеяние (КР) - явление, открытое в 1920-е годы. Его суть заключается в том, что при взаимодействии со средой и рассеянии световая волна модулируется молекулярными колебаниями среды, что приводит к появлению в рассеянном излучении новых длин волн, или, в обывательском понимании, другого цвета. В зарубежной научной литературе комбинационное рассеяние носит название эффекта Рамана - по имени его открывателя, нобелевского лауреата из Индии, а исследования с использованием комбинационного рассеяния называют рамановской спектроскопией. «Дистанционное измерение температуры воды в условиях быстротекущей смены климата - очень важная задача. Однако используемые методы радиометрии допускают ошибку порядка половины градуса. Методы спектроскопии КР позволят существенно повысить точность измерений», - утверждает Михаил Гришин, один из авторов исследования, аспирант МФТИ, сотрудник лаборатории лазерной спектроскопии Научного центра волновых исследований Института общей физики им. А.?М.?Прохорова РАН. В ходе эксперимента ученые облучали воду импульсным лазером, а затем изучали рассеянный в обратном направлении свет с помощью спектрометра. В зависимости от температуры спектральная полоса КР воды изменяла форму и положение. Ученым необходимо было проверить, можно ли выделить достаточно точную зависимость между отдельными параметрами полосы и температурой воды. В качестве таких параметров использовались площади отдельных частей под графиком, положение максимума огибающей полосы, разность между пиковыми значениями интенсивности при различных температурах. Между всеми вышеперечисленными параметрами и температурой была выявлена зависимость, но с разной степенью точности: от 0,15 до 0,6 градуса Цельсия. Статистический анализ данных эксперимента показал, что наиболее точная зависимость прослеживается именно между длиной волны максимума огибающей ОН-полосы и температурой. В настоящее время мониторинг температуры воды в арктическом регионе ведется различными методами: это и установленные буи, и данные с исследовательских и торговых судов. Однако в реальном времени и на поверхности океанов следить за динамикой температуры воды позволяет наблюдение с воздуха с использованием самолетов и спутников путем облучения лазером и изучения спектра. Пространственное разрешение составляет менее километра, что дает возможность составлять очень подробные карты температуры и по ним определять перенос теплоты-энергии океанскими течениями и предсказывать динамику таяния ледников для прогнозирования изменений глобального климата. Ввиду развития беспилотных систем сейчас возникла необходимость в создании достаточно компактного и эффективного оборудования для мониторинга, которое бы удовлетворяло требованиям по грузоподъемности и энергопотреблению. Ученые ведут работы над созданием не только программного обеспечения, но и «железной» составляющей - самой лазерной системы и системы обработки. Василий Леднев, ведущий эксперт кафедры сертификации и аналитического контроля НИТУ «МИСиС», один из авторов исследования, рассказал о перспективах данной работы: «Важнейшая задача дистанционного зондирования акваторий - калибровка и проверка результатов измерений со спутников с помощью различных прямых методов измерений параметров морской воды (температура, концентрация хлорофилла и т. д.). Создание и разработка автономных компактных лидарных систем (lidar - лазерный радар), устанавливаемых на беспилотные авианосители, позволяет получать подробные карты параметров океана, а также является востребованным направлением для изучения труднодоступных или опасных объектов, например айсбергов или шельфовых ледников». Среднегодовые изменения температуры мирового океана очень малы: на данный момент он теплеет на одну десятую градуса в десятилетие, в то время как за сезон его температура может меняться на несколько градусов. Таким образом, измеряя температуру с ошибкой даже в полградуса, мы значительно теряем в точности оценки переносимой теплоты-энергии: для сезонных измерений относительная погрешность составляет десятки процентов, долгосрочные же изменения могут быть не выявлены из-за ошибки измерений. Характерным отличием дистанционного термометра на основе спектроскопии КР от радиометров микроволнового диапазона, используемых в настоящее время при дистанционном измерении температуры, является то, что зондирующее излучение лазера лежит в области видимого (сине-зеленого) спектра. Микроволны почти не проникают в толщу воды, и поэтому данные о температуре корректны лишь для поверхностного слоя толщиной до 30 микрон, который активно охлаждается сильным арктическим ветром. Волны видимого диапазона, напротив, способны проникать заметно глубже (1–10 метров) и практически исключить ошибку, связанную с охлаждением поверхности воды ветром. Для коррекции таких ошибок при спутниковых микроволновых измерениях необходима калибровка по данным контактных измерений с наземных станций, в то время как спектроскопия КР лишена этого недостатка и позволяет дистанционно получать информацию о температуре воды без помощи контактных измерений. Источники:
1с онлайн бухгалтерия бесплатно |
|
|
© ANTARCTIC.SU, 2010-2020
При использовании материалов сайта активная ссылка обязательна: http://antarctic.su/ 'Арктика и Антарктика' |